

System Description	2
Field setup	3
Field setup - Switch position	4
Compensating for the XLPFH	. 5
Technical Support	6

Version: 220412 ID: DAA29

The XLPFH **E-line Low Pass Filter** is designed to reduce adverse effects caused by undesired high-frequency noise that might be picked up by the E-lines in the field layout setting.

The XLPFH is suitable for BMT applications where the electrode contact resistance reaches up to 1.3 kOhm for BMT applications and up to 20 kOhm for MT applications.

Depending on the electrode resistance the filter may introduce a phase shift to the signal, which will be compensated for by signal processing in EMpower.

Field setup

Connect the receiver to the XLPFH Filter

- **1.** Measure the contact resistance of each electrode (*N*,*S*,*E*,*W*) against the ground electrode. Take note of these values.
- 2. Twist the end of the wire from each electrode (*N*,*S*,*E*,*W* and Gnd) together with the corresponding color-coded wire of the XLPFH Filter.
 - Connect the twisted wire *(filter+electrode line)* to the corresponding binding post of your receiver.
- **3.** Set the desired position of the switch in the XLPFH, as explained on the following page

Field setup - Switch position

Before recording, make sure to take note of the position of the switch used for each recording at each station, this information is needed when processing data with EMpower

- 1. Set the switch to 180-500 Ohm, when the contact resistance of all electrodes is between 180 500 Ohms
- **2.** Set the switch to **500-1300 Ohm**, when the contact resistance of at least one electrode is over 500 Ohms.

Note that:

- The filter works best when a pair of electrodes *(i.e. N-S or E-W)* have similar contact resistances
- The filter will still work over 1300 Ohms of contact resistance, but might start introducing some distortion at the highest frequencies of your resistivity curve.

Compensating for the XLPFH Filters in EMpower

In order to obtain better results, if an XLPFH Filter was used during recording, this should be indicated in EMpower before processing the data. This setting can be saved in the "External filter" field of the information sheet of the recording. Make sure to select the XLPFH option that matches the position of the switch that was used to acquire the recording.

Approved		🖲 🌞 Unapproved 🔿 🗙 Rejected		
ols				
Time	Series	Spectra Process (Ortho	ogonal)	
Recording Informa Recording ID: Start time: Duration:	tion 10125_2017-08-24-15314: Aug 24 2017 09:31:42 (L 24 h 3 m	41 (Local) America/Edmonton (GMT-06:00)		
Survey name:	Kimberley, BC : Aug 2017			
Station name:	Remote			
Dperator(s):				
ayout Geometry:	Orthogonal		•	
Declination:	0.00°		\$	
Notes:	High contact resistence 15 declination -12 Azimuth	2		
Electric Channels Distar Channel (+)	ce (m) to GND	Resistance (ſl) / / Polarity (+) N / E (-) S / W Gain	DC [V]	
E1 50.00	\$ 34.50	Inverted 5335 3894.07 4 x 1 = x4 10000	-0.021	
E2 50.00	\$ 49.00	Inverted 3623.18 4096.92 4 x 1 = x4 10000	-0.021	
E Azimuth: 0 °	External Filter	r None		
		XLPFH 500-1300		
Magnetic Channels	Determined	None VI DEH 190, 500 glarity Gain LPF [Hz]	DC [V]	
Magnetic Channels Channel Se	risoi Detected	VI DEL 500 1200	-0.011	
Magnetic Channels Channel Se H1 MTC-1	io • MTC-150	ALPTH 500-1500 nverted X4 10000		
Magnetic Channels Channel Se H1 MTC-1 H2 MTC-1	50 V MTC-150	XLPFH 200-1500 nverted X4 10000 External filter ALP02-* 53880 Inverted X4 10000	-0.029	
Magnetic Channels Channel Se H1 MTC-1 H2 MTC-1 H3	50 ▼ MTC-150 50 ▼ MTC-150	External filter ALP02-* Inverted X4 10000 53880 ✓ Inverted X4 10000	-0.029	

Technical Support Contact

Please check out the <u>FAQs</u> <u>https://phoenixgeophysics.freshdesk.com/</u> Or email us at: support@phoenix-geophysics.com